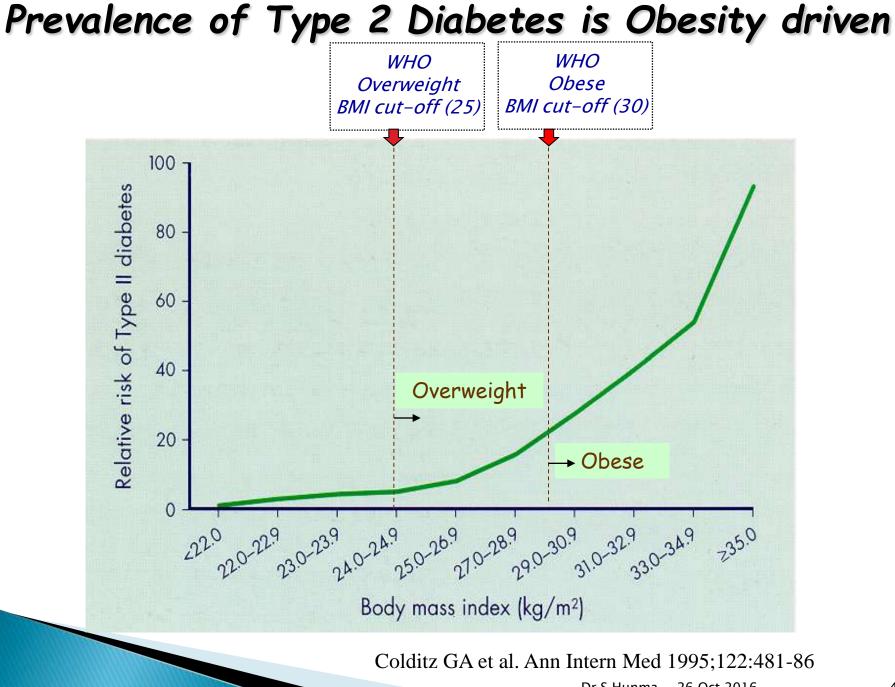

Diagnosing overweight & obesity by assessing *Body Composition* in Mauritius

Dr Sadhna Hunma


Body Composition & its relationship to Cardiometabolic Profile in healthy adult Mauritians of Indian & Creole Ethnicities

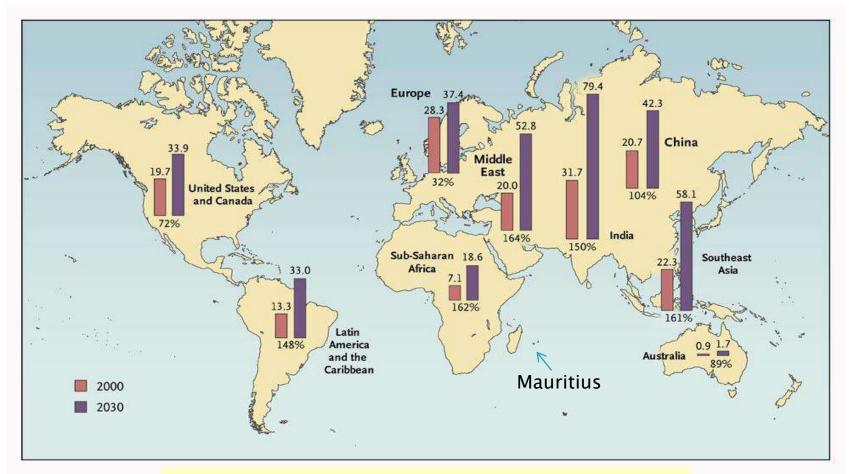
Dr Sadhna HUNMA University of Fribourg, Department of Medicine Switzerland

Thesis Supervisor : Prof A G Dulloo

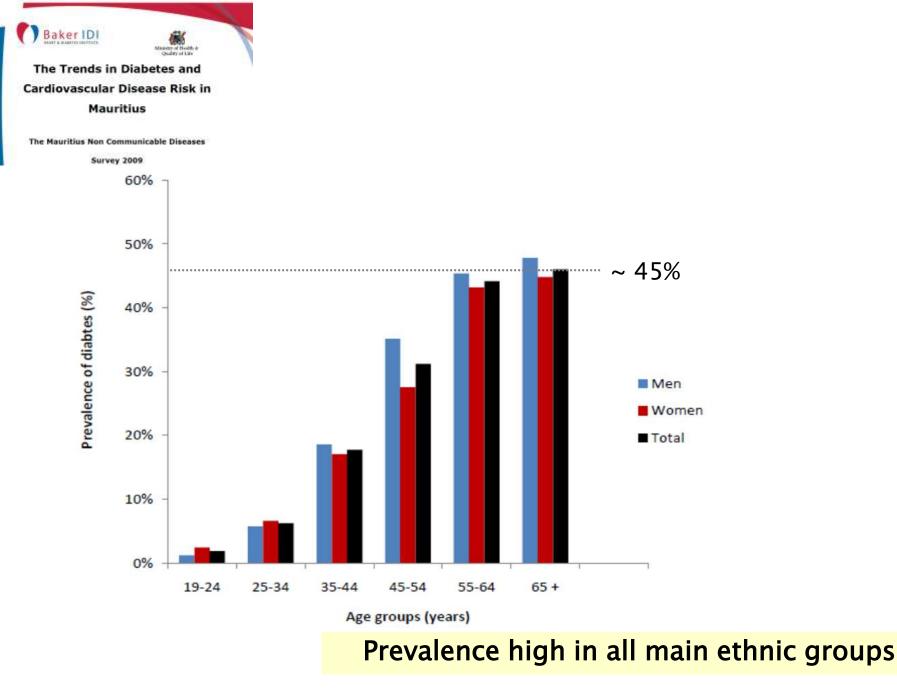

Rising Prevalence of Type 2 Diabetes Worldwide

From Hossain et al. N Engl J Med 2007

Millions of Cases of Diabetes in 2000


Projections for 2030 with Projected %Changes

Dr S Hunma 26 Oct 2016


Rising Prevalence of Type 2 Diabetes Worldwide

From Hossain et al. N Engl J Med 2007

Millions of Cases of Diabetes in 2000

Projections for 2030 with Projected %Changes

Mauritius: High prevalence of type 2 diabetes (T2D) & cardiovascular disease

- Mauritius: Population of 1.5 million
- Main Ethnic groups

70% Indians (*south asian ancestry*)
28% Creoles (African ancestry)
2% Chinese (East mainland China ancestry)

These 3 ethnic groups reflect ~ 2/3 of world population, <u>a microcosm of world epidemic</u>

since 1980's, many studies carried out in Mauritius by *World Health Organisation* (WHO): Aims: towards better *Diagnosis/ pathogenesis/Early predictors*

Some WHO publications based on research in Mauritius

- Dowse GK, Gareeboo H, Zimmet PZ, Alberti KG, Tuomilehto J, Fareed D, Brissonnette LG, Finch CF. High prevalence of NIDDM & impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Diabetes 1990; 39: 390-6
- Hodge AM, Dowse GK, Zimmet PZ, Collins VR.
 Prevalence and secular trends in obesity in Pacific and Indian Ocean island populations.
 Obes Res 1995; 3 (Suppl 2): 77s-87s.
- Soderberg S, Zimmet P, Tuomilehto J, de Courten M, Dowse GK, Chitson P, et al. Increasing prevalence of T2D mellitus in all ethnic groups in Mauritius. Diabet Med 2005;22: 61–8.
- Cameron AJ, Boyko EJ, Sicree RA, Zimmet PZ, Söderberg S, Alberti KG, Tuomilehto J, et al.
 Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius.
 Obesity (Silver Spring). 2008;16: 2707–16.
- Nyamdorj R, Qiao Q, Söderberg S, Pitkäniemi J, Zimmet P, Shaw J, Alberti G, et al.
 Comparison of body mass index with waist circumference, waist-to-hip ratio, and waist-to-stature ratio. as a predictor of hypertension incidence in Mauritius. *Hypertens* 2008; 26: 866-70.
- Magliano DJ, Söderberg S, Zimmet PZ, Chen L, Joonas N, Kowlessur S, et al. Explaining the increase of diabetes prevalence and plasma glucose in Mauritius. *Diabetes Care* 2012; 35: 87–91.

One major limitation: Use of <u>proxies</u> of adiposity (BMI & WC) rather than body fat *per se*

Dr S Hunma 26 Oct 2016

Limitations of BMI and WC

- Misclassification across UW/NW/OW/OB because BMI does not distinguish between fat mass and lean mass
- Underdiagnosis of OW & OB patients at risk

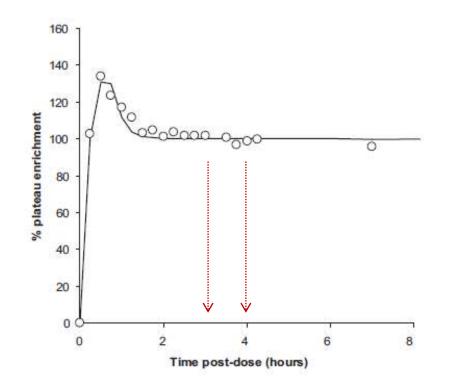
Therefore we need a valid method to assess body composition (Fat, FFM, %Fat, abdominal fat)

Which body composition method to use?

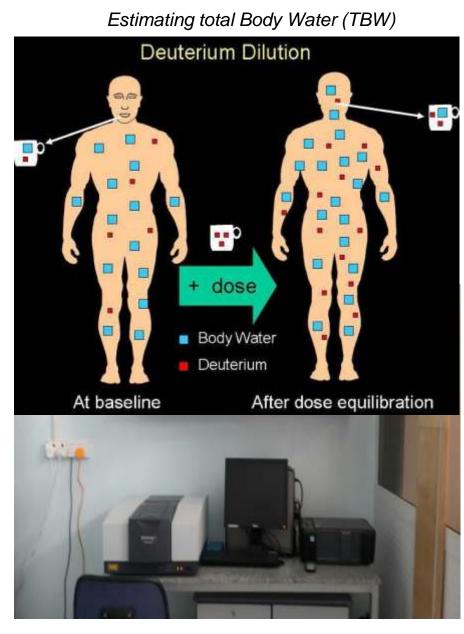
Body Composition Methods

Capability of different body fat measurements to estimate total body fat and fat distribution

Snijder et al. Int J Epidemiol. 2006 Feb;35(1):83-92.


Method	Capability measuring total body fat	Capability measuring fat distribution	Applicability in large population studies	
СТ	Moderate	Very high	Low	
MRI	High	Very high	Low	
DXA	Very high	High	Moderate	
Densitometry	Very high	Very low	Low	
Dilution D2O techniques	High	Very low	Moderate	
BIA (whole body)	Moderate	Very low	High	
BIA-Abdo(ViScan) Low		High	High	
BMI	Moderate	Very low	Very high	
WC, HC, WHR, SAD	Low	High	Very high	
Skinfolds	Moderate	Moderate	High	

 CT, computed tomography; MRI, magnetic resonance imaging; DXA, dual-energy X-ray absorptiometry; BIA, bioelectrical impedance analysis; BMI, body mass index; WC, waist circumference; HC, hip circumference; WHR, waist-to-hip ratio; SAD, sagittal abdominal diameter.



Principle of Deuterium oxide (D2O) dilution technique

Body water pool contains small amount of Deuterium (*collect baseline saliva*)

After dose equilibration 3-4 hrs: Enrichment which is amount of Deuterium in body water above that naturally present

Conc of deuterium in saliva samples measured by FTIR Dr S Hunma 26 Oct 2016 11

D2O technique (Two Component Technique : FM/FFM): Assumptions & Calculations

- D2O is distributed only in body water
- > D2O is equally distributed in all body water compartments
- Rate of equilibration of D2O is rapid
- Neither D2O nor body water is lost during equilibration time

VD: Dilution space of D2O

TBW: Total body water

FFM: Fat free mass

VD= Dose / Concentration

- TBW= VD/1.041
- $\mathbf{FFM} = \mathbf{TBW} / \mathbf{73\%}$
 - **Fat** mass = Body weight FFM

BIA(Bioelectrical Impedance Analysis) : predictive techniques

BIA determines electrical impedance or opposition to flow of an electric current through body tissues \Rightarrow Conductivity α total body water (TBW) \Rightarrow FFM Fat mass = Body weight - FFM

BC-418 (BIA8) 8-contact electrodes single frequency BIA

ViScan Abdominal fat analyser by BIA + estimates WC by IR

Dr S Hunma 26 Oct 2016

Subjects: recruitment criteria

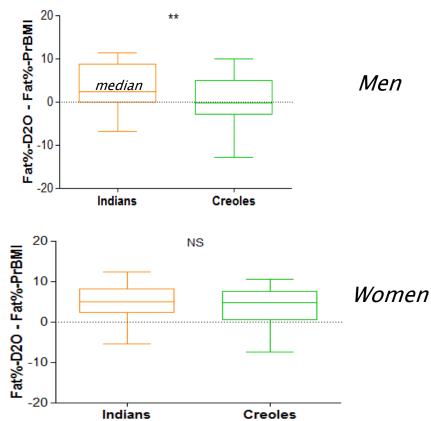
- Healthy Men & Women of age 20-40 yrs of Indian & Creole ethnicities
- Non-regular smokers
- Non-regular alcohol consumers
- Non-pregnant & non-lactating mothers
- Non-athletes or engaged in heavy manual work
- No intense activities 15 hrs before the study
 Fasting state on study day (12–15 h overnight fast)

Subjects: Physical characteristics (n = 175)

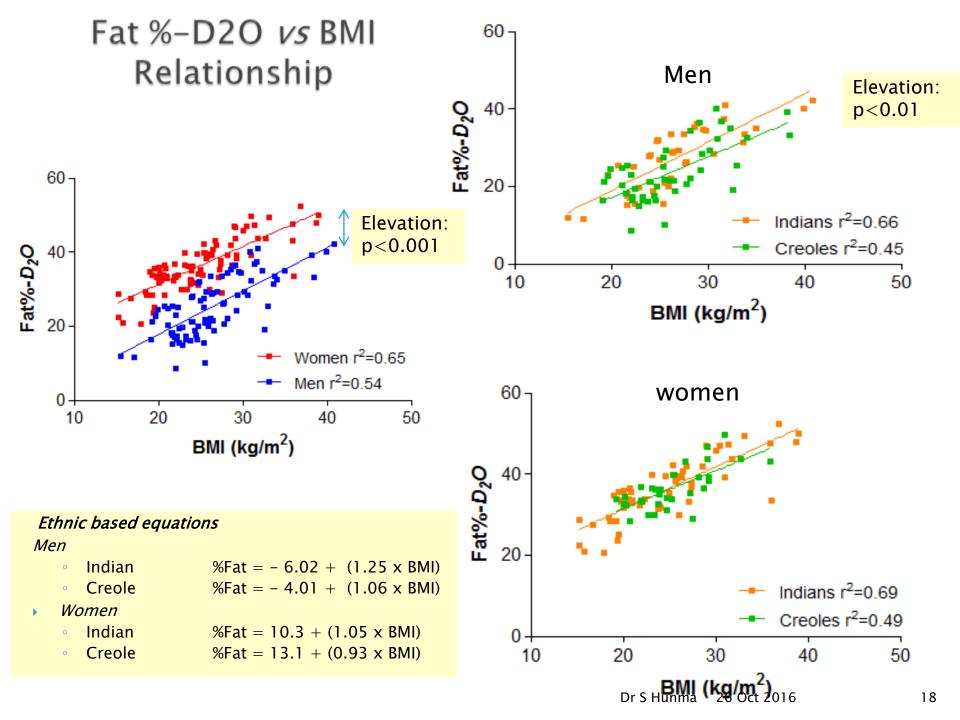
	All	
	Men	Women
	N=87	N=88
Age (y)	33.7	32.7
*	± 5.7	± 6.5
Weight (kg)	77.7	62.4 ***
	± 15.7	± 14.9
	÷ 13.7	÷ 17.5
Height (m)	1.72	1.58***
	± 0.07	± 0.06
BMI (<i>kg/m</i> ²)	26.2	24.9
	± 5.0	± 5.3
	20.0	2010
	04.6	00.0
WC (<i>cm</i>)	94.6	92.6
	±12.3	±12.6

Aims of study

In young disease-free adult Mauritians

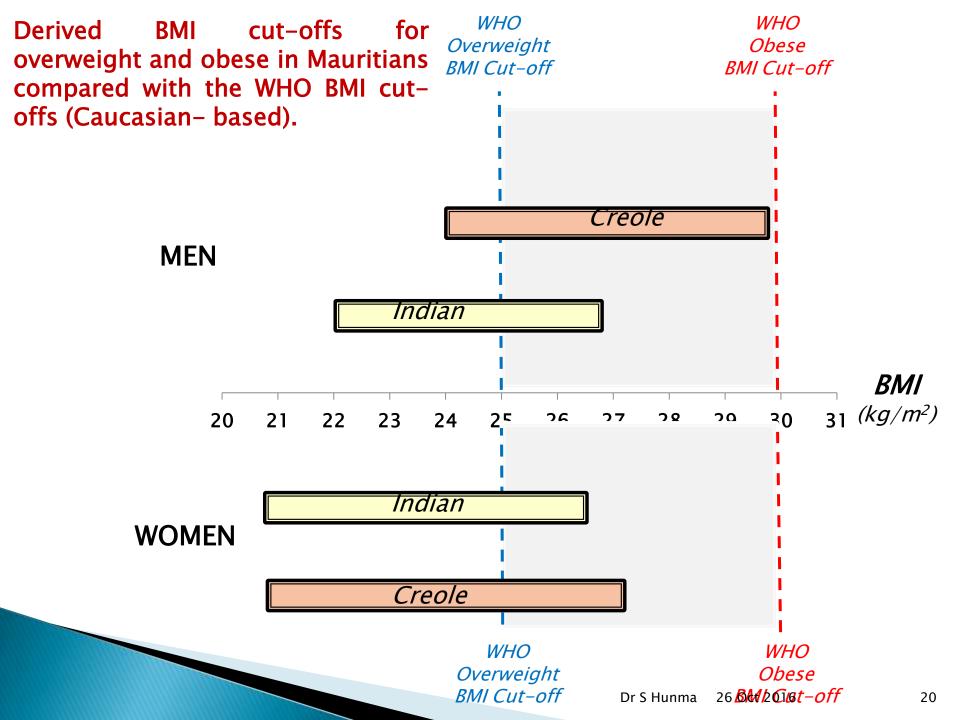

- Use of D2O dilution technique as reference method

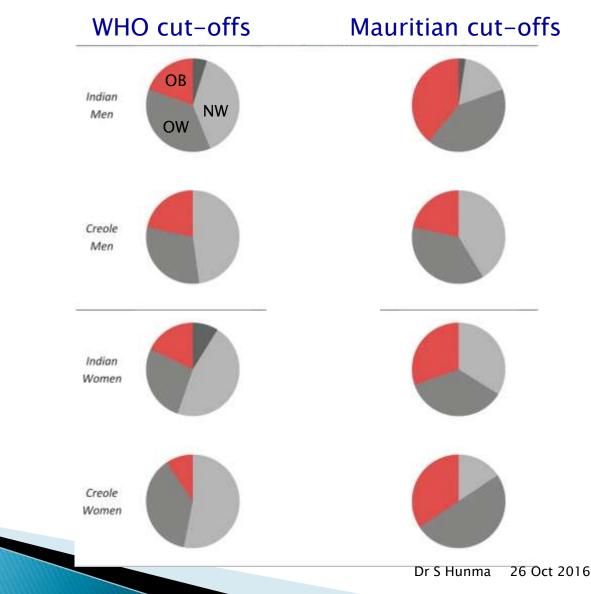
 to establish the BMI-body fat% relationship and
 to investigate gender & ethnic differences (*Indian vs Creole*).
- Use of ViScan (abdominal/WC) analyser
 - to establish relationship between WC and abdominal fat%,
 - to investigate potential gender & ethnic differences
- Validate two field techniques (Bioimpedance BC-418 analysis system and the SKF technique) against D2O dilution reference technique for the assessment of total body fat%
- Evaluate the relationship between cardiometabolic signatures in relation to body composition, and according to gender & ethnicity.


Comparison of Fat% <u>measured</u> by D2O (Fat%-D2O) versus Fat% <u>Predicted</u> by BMI (Fat%-PrBMI)

 Developed & Validated in Caucasians (using hydrodensitometry as reference.

%Fat=(1.2 x BMI)+(0.23 x age)-(10.8 x gender)-5.4


(males=1, females=0)


Estimations of new body fat% based on classic BMI cut off points & new ethnic specific cut offs

		Body fat (%)			
	Men	13.6 %	21.4 %	27.4 %	
		NW/	OW	ОВ	
	Caucasian	> 18.5	> 25.0	> 30.0	
	Indian	> 15.7	> 22.0	> 26.8	
	Creole	> 16.7	> 24.1	> 29.7	V
BMI					
cut-offs					
(kg/m²)	Women	24.4 %	32.2 %	38.2%	
		NW	OW	ОВ	
	Caucasian	> 18.5	> 25.0	> 30.0	
	Indian	> 13.4	> 20.8	> 26.5	
	Creole	> 12.3	> 20.7	> 27.1	

BMI cut-offs: Ethnic difference is *Gender specific*

Proportions of Overweight (OW) & Obese (OB) based upon WHO (Caucasian-based) cut-offs vs Mauritian cut-offs for this cohort (n=175)

Conclusions of Body Composition (BC) study in Mauritius

- European cut offs of 25 & 30 kg/m2 valid only for Creole men (others had lower BMI cut offs)
- Gender-specific Ethnic differences in BC must be considered to avoid misclassification about adiposity & disease risks

Publication

- Body composition-derived BMI cut-offs for Overweight & Obesity in Indians & Creoles of Mauritius. Int J Obes (Lond) 2016 (in press)
- Sadhna Hunma, Harris Ramuth, Jennifer Miles Chan, Yves Schultz, Jean Pierre Montani, Noorjehan Joonas and AG Dulloo

THANK YOU !!

www.bigstock.com · 145794767